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Understanding and measuring sheep cognition and behavior can provide us

with measures to safeguard the welfare of these animals in production systems.

Optimal neurological and cognitive development of lambs is important to equip

individuals with the ability to better cope with environmental stressors. However, this

development can be a�ected by nutritionwith a special role from long-chain fatty acid

supply from the dam to the fetus or in lamb’s early life. Neurological development in

lambs takes place primarily during the first two trimesters of gestation. Through late

fetal and early postnatal life, the lamb brain has a high level of cholesterol synthesis.

This rate declines rapidly at weaning and remains low throughout adulthood. The

main polyunsaturated fatty acids (PUFA) in the brain are ω-6 arachidonic acid

and ω-3 docosahexaenoic acid (DHA), which are elements of plasma membranes’

phospholipids in neuronal cells. DHA is essential for keepingmembrane integrity and is

vital for normal development of the central nervous system (CNS), and its insu�ciency

can damage cerebral functions and the development of cognitive capacities. In sheep,

there is evidence that supplying PUFA during gestation or after birth may be beneficial

to lamb productive performance and expression of species-specific behaviors. The

objective of this perspective is to discuss concepts of ruminant behavior and nutrition

and reflect on future research directions that could help to improve our knowledge on

how dietary fatty acids (FA) relate to optimal neurological and cognitive development

in sheep.
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1. Introduction

Understanding animal behavior as well as cognitive needs and capacities is needed inmodern

animal farming, among other reasons to prevent the exposure of farm animals to inadequate

welfare conditions (1). Various management practices have been reported to adversely affect

welfare in farmed sheep [e.g., (2–6)]. Traditionally, animal cognition has not always been

recognized as important to animal welfare at a farm level. This is changing, however, and

cognition is currently proposed to be essential for livestock management, as conditions that

either improve or are less detrimental to cognitive development, could improve welfare and
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increase animal’s growth (7). Improving our understanding in

this field will simplify attempts to adapt husbandry systems and

enrichment for farm animals’ needs and preferences (1). In humans

[i.e., (8, 9)] and rodents [i.e., (10, 11)], factors that impact on cognitive

functioning, such as nutrition, have been extensively investigated but

this is not the case for farm animals.

We know that in animals, suboptimal neurological and cognitive

development can lead to welfare problems due to an individual’s

potentially impaired ability to cope with its environment (or changes

on it). In terms of nutrition, in mammals, dietary fatty acids play a

key role on neurodevelopmental functions and ω-3 docosahexaenoic

acid (DHA) has been shown to promote synaptogenesis, and

neuritogenesis (12), as well as playing important roles during

maternal nutrition as it can improve synaptic transmission, and

function as a cytosolic signal-transducing factor for gene expression

throughout fetal brain development (13).

The objective of this perspective is to discuss basic concepts on

behavior and nutrition, and its potential interplay with neurological

and cognitive development in sheep. We specially outline future

research directions that could help to improve our knowledge on

how dietary fatty acids (FA) relate to optimal neurological and

cognitive development in sheep. In addition to the role of cognition

in farming, sheep are a commonly used animal model for studying

gestation and fetal development in humans (14, 15), thus there is

translational value of research in sheep lambs for understanding

human fetal development.

2. Coping with the environment: The
role of cognition and stressors

2.1. Cognition in sheep

Cognition involves, among other features, learning, memory,

attention, and reasoning, which are the combination of internal

psychological processes that affect an animal’s behavior (16).

Learning, remembering, and integrating information helps animals

to optimize their decision-making processes in a variety of

environmental contexts (17).

For farm animals, an optimal developmental of cognitive traits

is key to better cope with their husbandry environment. Studies in

sheep have shown that they develop a wide set of cognitive traits to

flexibly navigate in their environment [reviewed in (1, 18)].

Sheep are good spatial learners—they learn swiftly how to

navigate in a maze task and remember a food location (19). Sheep

also easily adapt to a virtual fencing system where they need to

associate an acoustic stimulus with an outcome (19). Other cognitive

studies on sheep’ ability to interpret their physical environment

have found that they can make logical inferences in decision-

making tasks (20). Learning to flexibly navigate in their husbandry

system and making predictions about future events to gain access to

crucial resources is key for keeping frustration, and therefore stress

levels, low.

Navigating their social environment is also important for

sheep. It comes to no surprise that they can discern between

different non-human animal species, humans, and figures, which

implies high-level skills with involvement of specific neural circuits

both in the prefrontal cortex and the temporal cortex (21–23).

Likewise, the complex neural processing of visual recognition of

individuals related to previous experience that can modify sensory

processing has been reported; for example, sheep visually identify

other sheep on specific physical characteristics, recognize and

memorize conspecifics (23) and humans (24), and are able to

differentiate familiar from non-familiar sheep (23). Sheep also

form strong mother-offspring bonds which are characterized by

the rapid establishment of individual recognition of the lamb

using visual and auditory cues (25). These skills are crucial in a

husbandry environment but can lead to welfare challenges (e.g.,

aggression between subjects) when group composition changes

or large group sizes limit individual recognition of subjects

individuals.

A variety of behavioral and cognitive parameters can be

linked to inter-individual differences in behavioral expressions,

also often referred to as personality profiles, temperament, coping

strategies or coping style (26). Personality profiles are influenced

by genetic interaction, age, previous experiences, and environmental

conditions, such as the facilities where the animals are kept.

Thus, variation of personality profiles should be used for the

design and analysis of tests to improve interpretation of behavioral

responses (27).

2.2. Learning, behavioral flexibility, and
coping with the environment

In the wild, animals need to flexibly adapt to their environment to

find food and other resources (28). In captive housing environments,

animals, too, must adapt to new contexts (e.g., locating and

remembering new drinker and feeder positions after transfer to new

environments). Their ability to learn, and re-learn new contingencies,

here plays a crucial role as subjects who need more time to adapt

will experience stress and poorer welfare. Many behaviors shown by

farm animals in their daily routine are acquired by learning processes.

Learning can take place via a variety of mechanisms e.g., through

classical conditioning or via trial and error (operant conditioning).

Behavioral flexibility refers to the adaptive change in the behavior

of an animal, e.g., an animal’s ability to learn a now reversed learned

contingency and inhibit a previous, not non-rewarded, response.

Differences in an animal’s ability to learn and/or flexible adapt their

behavior, caused by external or internal factors, can be of relevance

in the context of various welfare-related issues in farm animals,

such as adjusting to new environments or changes in housing

and management routines. However, these factors remain relatively

unexplored in farm animals.

In the case of sheep, the ability to flexibly adapt to a

changing environment could also be linked to specificities of the

corresponding production system the animals are kept it (grazing

or in confinement). In particular, barren environments can lead

to boredom and can increase stereotypies (30–32). The physical

husbandry environment can also modify neuronal development

and thus cognitive abilities (17). Enriched environments stimulate

active, diverse, and flexible behaviors that are desirable compared

to barren environments. For example, in goats, environmental

and cognitive enrichment has been shown to positively affect goat

behavior and learning [e.g., (33)] and could thus also lead to

similar effects in sheep. However, environmental, and cognitive

enrichment often come with considerable financial costs, as well
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FIGURE 1

Developmental stages (lipid importation, myelinization and maturation of myelin) of the fetal lamb nervous system [adapted from Barlow (29)]. Created

with BioRender.com.

as with changes in husbandry systems, which makes it, despite its

welfare benefits, often not economically viable to be implement in

industrial settings.

Learning and flexibility can be compromised in early-life

neuronal development [reviewed for humans by (34)], so it is key to

identify factors that lead to an optimal development of these traits

from early life on.

3. Neurological and cognitive
development in sheep/lambs

3.1. Sheep characteristics

Before revising specifics on neurological development, it is

important to consider specific characteristics of sheep. The lamb’s

brain is relatively well-developed at birth, and sheep are considered

as a pre-natal brain developer (35). Compared to rodents, sheep have

a high rate of neurogenesis which allows them to be relatively mature

and mobile since birth (36). The ewes produce offspring that have

fully functional sensory and motor capabilities (37); lamb survival

depends on how fast the lamb stands and gets milk from the udder

(38). Sheep also possess good spatial learning abilities and memory

and form complex social networks when within their groups (39).

Social isolation is, thus, a very stressful situation for sheep (40).

3.2. Brain development from prepartum to
postpartum in lambs—The importance of
fatty acids

Structure and organization of the ruminant brain is similar to that

of other mammals, and distinctive features of the ruminant brain are

the deep depression of the insula, the pronounced gyri in the cortices,

the dominant position of the visual and olfactory systems, and the

relatively large dimension of the diencephalon (41).

Knowing how brains develop and the onset of the CNS

development stages is important to identify when to perform

a more efficient dietary intervention related to dietary FA.

According to Barlow (29), in sheep, there are six stages in the

development of regions of the CNS (Figure 1): (1) Neuroblast

differentiation and migration, (2) Neuronal differentiation,

(3) Spongioblast migration and differentiation, (4) Vascular

proliferation and lipid importation, (5) Myelination, and (6)

Maturation of myelin. Some regions of the sheep brain are shown

in Figure 2.

Regarding the role of lipid groups on CNS development,

perivascular phospholipids are rapidly integrated for myelin covering

whereas galactolipids are gradually used (29). Myelin is critical

for smooth electrical signal transmission in neurons and protects

neurons against physical forces and offer strong microstructural

networks that supports white matter tissue (42).
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FIGURE 2

Brain regions of a 3 months weaned female Dorset lamb (89.3 g), with

a barley hay-based diet with 5% fishmeal inclusion. Corresponds

to a section that is below the cerebral cortex. Created with

BioRender.com.

During the first two-thirds of gestation in fetal lambs,

neurological development gradually increases, and connections

between the cerebral cortex (the brain structure generally held

responsible for higher cognitive functions), and subcortical brain

structures (principally the thalamus) lead to the start of sensory

perceptions (43). To ensure brain growth and development, through

late fetal and early life, the brain has a high level of cholesterol

synthesis. This rate declines at weaning and remains low during

adulthood (44).

The brain has around 35% lipids consisting of PUFA. They are

poorly synthesized in the brain, thus most PUFA come from the liver,

and its presence in humans is largely dependent on the intake of fish

and other marine products, which is frequently under the advised

daily intake (45). For sheep, grasses will be common sources of dietary

PUFA (46).

The main brain’s PUFA are ω-6 arachidonic acid (ARA) and

DHA, which are part of neuronal cell’s phospholipids-membranes

(47). ARA and DHA are essential nutrients and are important

constituents of all cell membranes and are related to membrane

fluidity and influence the performance of membrane-bound enzymes

and receptors (48–50). DHA is essential for preserving membrane

integrity and, therefore, synaptic tasks. Hence, DHA is important for

the regular development of the central nervous system (CNS), and its

insufficiency damage cerebral activities with irreparable damage (51),

resulting in neuropsychiatric disorders (45).

In the sheep fetus, brain weight increases in two phases, before

and after 90 days of gestation, and these phases consist of a raise

in neuroblast growth accompanied by neuroglial proliferation and

myelination. At birth, lamb brain weight is about 50% of the brain

weight in an adult sheep (35) (Table 1). Patterson et al. (53) described

that there are two peak periods of myelinization related to an increase

of cerebroside which occurs about 20 days prior to birth and then at

10–20 days following birth. Myelin is composed by cerebroside which

is formed by 24 carbons-PUFA and increase its concentration at 85

days of gestation (Table 2) (53).

Fetal programming is the reaction to a specific challenge that

a mammalian organism faces during gestation and that modifies

the course of fetal development (54). This concept was initially

used in human epidemiological data involving low birth weights

and inadequate maternal nutrition to an increased prevalence of

metabolic disorders (55). Studies connecting fetal programming

to animal performance in livestock are relatively recent. These

experiments have reported that both under and over nutrition

throughout gestation influence offspring growth and performance

(56, 57). Consequently, alongside genetics, proper fetal development

is needed to reach the growth potential of animals (58), which could

be optimized with dietary FA.

In general, in mammals, ω-3 docosahexaenoic acid promotes

multiple neurodevelopmental functions, such as synaptogenesis, and

neuritogenesis (59). During gestation, dietary FA play an important

role for fetal development (13). For example, DHA maintains

membrane fluidity, synaptic transmission, and function as a cytosolic

signal-transducing factor for gene expression throughout brain

development (60). In mammals, compared to ARA (up to 5%),

DHA concentration in the neuronal membrane is moderately greater

(between 15 and 50% of total FA) (59). While the rapid accumulation

of DHA into the brain appears during the last trimester and

subsequently during lactation, thematernal DHA concentrationmust

be kept stable through the crucial stage of brain development (59).

Therefore, another critical point for brain development is whether

lambs are fed on maternal milk or with milk replacers, and in one

hand this will be related to the ewes’ diet and on the other to the milk

replacer formula. In either case, most PUFA are stored in the brain

throughout the last third of gestation, which is a period characterized

by intense cell division and synaptogenesis (48).

Ruminants have epitheliochorial placentas that are less permeable

to free FA than hemochorial (e.g., primates and rodents) (61), and

thus, placental transport of short- and long-chain FA in ruminants

is restricted (62). Campbell et al. (63) explained that FA in maternal

circulation is the primary resource of FA for the fetus and specifically,

ω-3 fatty acids are inserted into the placental syncytium by passive

diffusion or by membrane-bound carrier proteins and the extent of

this transfer will depend on FA affinity to these proteins (50).

Decreased DHA in the developing brain affects neurogenesis,

neuro-transmitter metabolism, as well as learning and visual function

in animals (48). A lack of DHA through gestation and perinatally

cannot be reversed later in life (51, 59). Similarly, Lim et al.

(64) conducted a study to establish if supply of preformed dietary

docosapentaenoic acid (DPAn-6) could substitute DHA for brain

function as evaluated by spatial task performance. In that study, rat

pups were fed with DPAn-6 in adulthood and had a lower brain

DHA than the dam-reared pups and had negative effects in spatial

retention when animals were tested using the Morris water maze.

They concluded that DPAn-6 could not replace DHA for brain

function, implying a specific structural necessity for DHA.

Taken together, CNS development can be improved by supply of

ω-3 FA, and this could be achieved using the fetal developmental

programming approach or by supplying these FA during lamb’s

early life.

3.3. Stress and cognitive development

In times of stress, an animal’s behavior can become inflexible,

hampering their ability to solve problems (65). In sheep, there

are events where stress can affect the dam or the offspring, for
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TABLE 1 Embryonic and postnatal growth stages in relation to body weight gain, brain weight (absolute and relative to body).

Stage of
development

Age days Days of
gestation

Body WT, kg Brain Wt

Absolute, g Relative to body wt,
%

Relative adult weight, %∗

∼-110 40 0.00393± 0.00065 0.2095± 0.0235 6.7 0.20

∼-96 54 0.023± 0.002 1.565± 0.175 6.7 1.48

∼-83 67 0.080± 0.005 4.035± 0.545 5 3.83

Early fetal −73 ∼77 0.21± 0.01 7.1± 0.5 3.5± 0.1 6.59

∼-69 81 0.25± 0.002 9.665± 1.065 3.8 9.16

∼-60 90 0.465± 0.04 14.27± 1.57 3 13.53

∼-55 95 0.640± 0.06 19.405± 2.135 3 18.40

Midfetal −42 ∼108 1.31± 0.12 33.1± 4.3 2.6± 0.3 30.71

∼-41 109 1.32± 0.12 33.675± 3.705 2.5 31.93

∼-29 121 2.15± 0.14 41.805± 4.605 1.9 39.63

Late fetal −14 ∼136 3.89± 0.23 55.6± 1.4 1.3± 0.1 51.58

∼0 150 52.74 50.00

Newborn 0 ∼150 3.83± 0.38 53.9± 2.7 1.5± 0.1 50.00

Suckled 17 9.41± 0.25 75.6± 1.0 0.8± 0.1 70.13

Weaned 105 29.6± 1.1 118.2± 4.3 0.4± 0.1 109.46

Blue: Average live weight, brain weight and percentage brain/live weight ratio of male and female Rambouillet lambs.

Purple: Average live weight, brain weight and percentage brain/live weight ratio of fetuses of female and male Merino lambs [Adapted from Cavender et al., (52); McIntosh et al. (35)].
∗Relative brain adult brain weight was calculated as: absolute brain weight for each stage of development× 50 (corresponding to the percentage of the lamb brain weight at birth)/the lambs absolute

brain weight at birth corrected for each breed.

TABLE 2 Chemical composition of developing and adult sheep central nervous system divided by cerebrum, cerebellum, brain stem and spinal cord.

Stage of
development,
conceptual
age (days)

Total lipid (mg/g fresh wt.) Cerebroside (µmol/g fresh wt.)

Cerebrum Cerebellum Brain
stem

Spinal
cord

Cerebrum Cerebellum Brain
stem

Spinal
cord

Fetal 85 25 23 31 34 1 1 1 3

110 26 24 45 45 0 2 4 9

100 33 32 48 64 1 6 11 19

120 34 39 58 80 1 4 19 33

130 36 56 77 117 5 11 21 42

140 50 66 112 132 6 12 35 46

Post-natal 150 53 65 103 150 8 14 31 39

160 55 71 106 161 10 19 33 40

170 59 73 113 164 10 18 40 48

180 66 79 112 191 12 20 37 57

Adult 365 100 93 138 202 25 28 51 78

Mean values± standard error of the mean.

Adapted from Patterson et al. (53).

The higher the color intensity, the higher the weight.

example, Chronic Maternal Psychosocial Stress during the 1st and

2nd trimester results in extended effects on neuronal network

and myelin formation, contributing to disturbed neurobehavioral,

cognitive, and motor development in offspring of stressed mothers

(66). Neuronal network and myelin formation are pivotal for

brain development which as certain proper brain function

(66). In ewes, facing stress around the final 3rd of pregnancy

increases emotional reactivity and this can be manifested in lamb’s

deficits in spatial learning (4) and could ultimately affect their

production performance.

Cortisol is crucial for the maturation and development of new-

borns, and, in sheep, this glucocorticoid cross the placenta during the

last third of gestation (67). A natural rise of cortisol appears prior to

parturition in at least the last 10 days of gestation in the dam and fetus

(68). Extreme cortisol levels of ewes in the last weeks of gestation can

affect the fetus and modify placental morphology leading to reduce
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TABLE 3 Milk fat content (g/100g) and main fatty acid groups (% of total

fatty acids) in milk from ruminants.

Cow Sheep Goat

Total fat 3.3–6.4 4.0–9.0 3.0–7.2

∑
Saturated fatty acids 55.0–73.0 57.0–75.0 59.0–74.0

∑
Monounsaturated fatty acids 2.0–30.0 23.0–39.0 19.0–36.0

∑
Polyunsaturated fatty acids 2.4–6.6 2.6–7.3 2.6–5.6

∑
ω-6 1.2–3.0 1.6–3.6 1.9–4.3

∑
ω-3 0.3–1.8 0.5–2.3 0.3–1.48

Adapted fromMollica et al. (70).

fetal growth provoked by impaired uteroplacental perfusion (69).

Therefore, stressors can affect lamb’s behavioral expressions, and this

could impede their adaptation to productionmanagements. Avoiding

unnecessary stressful situations during sheep gestation can prevent

problems on behavior and cognitive abilities in young lambs and this

process deserves more research attention.

4. Nutrition and its interplay with
neurological and cognitive
development

Not much information is available on the mechanisms relating

milk/dairy intake and cognitive performance (70). Milk from

ruminants is characterized by high contents of total saturated FA

and low contents of PUFA. This is because several types of ruminal

bacteria hydrogenate dietary unsaturated FA and this leads to high

contents of palmitic (C16:0) or stearic (C18:0) acids in milk (71).

There are differences between ruminant species in terms of milk FA

profile (Table 3). Compared to cow’s and goat’s milk, sheep milk has

more milk fat content. Compared to cow’s milk, goats and sheep

milk have more contents of total saturated FA, specifically those with

short- andmedium- chain FA (70). Diet and its bioactive components

intervene in the development of neuropathologies and it has been

reported that saturated fatty acids (SFA) and simple carbohydrates

are negative for the brain, while PUFA, polyphenols, and antioxidants

are neuroprotective (72, 73).

In sheep, the brain weight is about 0.26% of total body weight

(74). In humans, the brain represents around 2% of adult total body

weight but spends 20% of the total body’s oxygen demand (75).

Total cerebral dry weight has up to 50% lipids from which 70% are

phospholipids and can be enhanced with DHA (76). Also, DHA has

an important role as brain antioxidant (12).

Animals (i.e., rats, young primates, or new-born piglets) with a

chronic shortage of dietary ω-3 PUFA, from conception to the early

stage of development, exhibit a reduced concentration of DHA in

neuron membranes, resulting in retarded visual acuity and impaired

learning ability (47, 77). It is thus essential that the fetus receives

PUFA through the placenta, and the new-born from maternal

milk (47).

Synaptic plasticity supports connectivity between neurons and

hence affects the ability of learning and memory through long-

term potentiation (LTP). Dietary DHA may stimulate LTP by

repairing neurotransmitters release (78). For example, in rats,

memory impairment was directly associated with gene expression of

presynapticmembrane-associatedmediators in the hippocampus and

this organ together with the cerebral cortex are the major structures

for facilitating memory functions (59). Research in this area is still

limited in ruminants.

Neurons and glial cells cannot perform desaturation of FA, such

as alpha-linolenic acid (ALA), which is needed for DHA synthesis

(79). Therefore, if DHA is needed to be integrated into the brain, it

must derive from marine foods or be synthesized in the liver from

ALA (79, 80). In sheep diets, oilseeds and their by-products could be

sources of ALA and linoleic acid (80, 81). Another milk FA that has

been reported to protect against the decline of synaptogenesis (82)

and protect cortical neurons from glutamate excitotoxicity in mouse

(83) is rumenic acid also known as conjugated linoleic acid (CLA).

It has been reported that a maternal supplemented diet with CLA

during gestation and lactation results in positive effects on learning

and memory in the new-born rats (70, 84). CLA is characteristic of

ruminant milk fat, and it is a by-product from a process known as bio

hydrogenation where dietary unsaturated FA are chemically changes

and many isomers are produced, and CLA is one of them (71, 80).

To our knowledge there is little information concerning how

dietary fatty acid supplementation during development affects

behavior. Whalin (85) has shown that supplementation of different

fatty acids during different stages of life are important for improving

learning abilities. In that experiment, ewes were supplemented

with either a source of DHA and EPA or saturated (SFA) and

monounsaturated fatty acids (MUFA) during early gestation; the

offspring was supplemented also with either source of fatty acids,

creating 4 groups of lambs (the ones that received always received

DHA and EPA, the ones that only received SFA and MUFA, or the

ones that received both sources but at different stages of life). On

that study there was no difference in the time lambs’ needed to solve

a maze task; however, those lambs that have received both sources

of FA (EPA and DHA) solved the maze much faster the second

time than those lambs that had only received one source of fatty

acids (85). This result shows the importance of essential fatty acids

supplementation during developing; but more research is needed

to understand the fatty acid profile required at each specific time

of life.

As discussed, dietary FA can be used as a proxy to improve

neurological development in fetus when the dam is on the last

trimester of gestation where a rapid brain growth occurs. One feasible

option to supply FA to the pregnant ewe is by feeding them with

calcium salts of vegetable oils (81). When oils are transformed into

salts or soaps, the become rumen inert fats and can increase intestinal

absorption of FA which could be transported in the blood until the

reach placenta and pass into the fetus (Figure 3).

There are potential pathways on how to investigate the

various impacts that nutrition can have on sheep development

cognitive development. Most of them have not focused on

the interplay between nutrition and neurological and cognitive

development. Below maternal conditions and epigenetic factors will

be briefly discussed.

4.1. Maternal conditions

Maternal environments and nutrition during pregnancy are

crucial for fetal development (13). In sheep, maternal nutrition
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FIGURE 3

Role of dietary fatty acids on the neurological development during gestation in sheep. Created with BioRender.com.

impacts fetus development, for example birth weight can be reduced

in lambs born from undernourished dams during second and

third thirds of gestation or during whole pregnancy (86). Placental

condition is important because throughout the end of the first and

beginning of the second trimester of gestation, placental growth

happens (87) with the highest growth appearing between days 40

and 60 of gestation (88). Consequently, a maternal dietary restriction

during this phase can affect placental development (89) and reduce

angiogenesis (86, 90).

Intrauterine growth restriction (IGR) or fetal growth restriction

(FGR) refers to infants that failed to reach their in utero genetic

growth potential leading to low birthweights (14). Intrauterine

growth restriction can lead to placental insufficiency and that has

an adverse effect on the growth and development of sympathetic

nervous system, brain, and heart (15).

In sheep, placental embolization at 120 days of gestation can lead

to low birth weight, which relates to reduced myelination, augmented

apoptosis and astrogliosis in the cerebral white matter, and reduction

of Purkinje cells in the cerebellum, and dendrites growth (91). In

this sense it is important to consider that the fetal brain demands

that PUFA are provided from the mother through placenta and

DHA is the brain’s main structural component that is important for

membrane fluidity and neuronal signaling (12). Supplementing dams

with a source containing DHA have shown to increase the DHA

concentration in the fetus brain compared with brains from fetus

from non-DHA supplemented dams (92).

4.2. Genetics and epigenetics

Performance of individual animals [i.e., rodents (93); goats (94)

pigs (95)] in cognitive tests can be related to genetic background. In

fish, it has been reported that artificial selection for cognitive traits

or brain size can provoke great variations among generations (96).

Knowledge on heritability of cognitive traits is complex (17) and in

ruminants is a research area that deserves attention.

Polyunsaturated FA regulates gene expression involved in cellular

differentiation, growth, and metabolism (97). Omega-3 PUFAs are

ligands for transcription factors involved in gene regulation of

metabolic and developmental processes (98, 99). Supplementation

withω-3 PUFAs have shown alterations not only in new-born growth

(99), but also in mRNA expression on the fetal part of the placenta

(92). Also, genes related to lipid metabolism such as free fatty acid

receptor, can be affected by maternal supply of ω-3 PUFA (92, 100).

Overall, the effect of nutrition and gene expression also known as

nutrigenomics deserves further attention as its relationship with

animal’s behavior and cognition have not been well explored.

5. Final remarks and perspectives

We here provide a crosstalk between sheep nutrition, cognition

and behavior, and many research questions can arise from this

outline. As discussed in this manuscript, different factors such

Frontiers in Veterinary Science 07 frontiersin.org

https://doi.org/10.3389/fvets.2023.1081141
https://BioRender.com
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Tajonar et al. 10.3389/fvets.2023.1081141

FIGURE 4

Factors a�ecting the neurological development of the sheep. Created with BioRender.com.

as maternal condition (fetal programming) and epigenetics can

affect nutritional benefits/supplementation and its subsequent

impact on neurological and cognitive development in lambs—with

optimally developed individuals being better able to cope with their

environment (Figure 4).

An optimal CNS development is crucial for the lamb’s life.

During gestation, a lack of essential nutrients such as DHA can

lead to impairment of lamb’s cognitive and behavioral expressions

which eventually will affect productive performance. This has

been extensively studied in humans [i.e., (101, 102)] but not

in sheep. Therefore, we hypothesize that dietary FAs have great

potential to improve cognitive development in lambs. Some reports

in ruminants suggests that these sources could be derived from

marine [products from fish or algae, i.e., (103, 104)] or vegetable

[oilseeds and their by-products, i.e., (81, 105)] sources. We

further propose that gestation is a critical time to implement

a nutritional strategy to improve lamb’s cognition (an approach

also known as fetal programming); if this is not feasible, we

suggested that providing milk and/or other feeds such as oilseeds

will stimulate the formation of PUFA that ultimately will reach

the brain. We still do not know if a specific type of dietary FA

will lead to differential effects on neurological development and

cognitive functioning in lambs. We further need to ask whether

the most efficient time for a specific nutritional intervention

would be before or after birth. An optimal neurological and

cognitive development will enable lambs to better cope within the

husbandry environment, with positive impacts on their welfare and

productive traits.
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